Producer Level Financial Impacts for Energy Crop Production

Greg H. Kaase, Steven L. Klose, Roland J. Fumasi and Melissa K. Jupe

Department of Agricultural Economics
Texas Agrilife Extension Service
The Texas A&M University System

Abstract

The recent push towards developing the cellulosic biomass ethanol market has created producer level interest for the viability of growing suitable feedstock. This analysis illustrates the farm level financial implications of switching production to forage sorghum or sugarcane. Utilizing actual producer data from the Texas Agrilife Extension FARM Assistance program, a model farm was developed to determine the financial impacts on this operation with respect to potential energy crop scenarios.

Assumptions

A 3,000 acre model Southeast Texas rice and hay farm was used to illustrate the financial impacts of converting rice and hay acreage to forage sorghum or sugarcane for the production of ethanol. The current production of this farm consists of 500 acres of rice and 1500 acres of hay being produced annually. It is assumed that the rice acreage must lay out of production for two consecutive years in order to combat yield losses. Ownership of the farm is assumed to be 50%, family living expenses are $85,000 per year, and spouse off-farm income is expected to average $25,000 per year. The two different scenarios indicate the potential for viable energy crop production as it also suggests improved financial measures versus the rice scenario.

Results

The increased interest in cellulosic ethanol production will continue to spark interest in the different sources of biomass which can be produced by the farm. This study looked at two different scenarios: 1) transferring rice acreage to forage sorghum and 2) transferring rice acreage to sugarcane. The forage sorghum scenario had the most significant effect on Net Cash Farm Income and Ending Cash Reserve values. These financial indicators grew at a much faster pace than those in the rice scenario. The sugarcane scenario also indicates the potential for viable energy crop production as it also suggests improved financial measures versus the rice scenario.

Background

Developing the cellulosic process using biomass feedstock to produce ethanol is at the forefront of technology development. With the increased interest in cellulosic ethanol production, researchers are constantly looking for new sources of biomass which can be cost effective and readily available to ethanol plants. When/if the process becomes commercially viable will depend in no small part on the feasibility of sourcing a biomass feedstock. Forage sorghum and sugarcane have been offered as potential feedstock solutions. To induce a critical mass of feedstock, a production facility will need to bid production away from a producer’s next best alternative.